AboutThis Item. Advanced 24.2MP Back-Illuminated 35mm Full-frame Image Sensor. 15-stop 4 dynamic range, 14-bit uncompressed RAW 4, ISO 50 to 204,800. Up to 10fps 1 Silent 5 or Mechanical Shutter with AE/AF tracking. See More. TheTCS3200 Evaluation Kit comes with everything needed to evaluate the TCS3200 color sensor. The evaluation kit comprises of a Parallax BASIC Stamp 2pe Motherboard programmed with the TCS3200 Evaluation Kit Stamp software program, a TCS3200-DB color sensor daughterboard with four 1'' aluminum standoffs, a 6' USB cable, and a CD-ROM with BASIC Smartphones Professionelle Smartphones; Zubehör; Alle anzeigen. Videokameras. Alle Videokameras; Camcorder; Mehrschichtiger 35-Vollformat-CMOS-Sensor mit integriertem Speicher für äußerst schnelle Aufnahmen; Alpha 6400 E-Mount-Kamera mit APS-C-Sensor. ILCE-6400 / ILCE-6400L / ILCE-6400M (549 549) Preisgekrönt. SmartphoneAndroid™ didesain untuk memudahkan hidup Anda dengan fitur seperti layar sentuh, kamera, camcorder, pemutar musik, Wi-Fi, Bluetooth, dan masih banyak lagi. Jelajahi Smartphone Android™LG. Temukan cara baru dalam berkomunikasi dan berbagi bersama Smartphone Android dari LG. AzREm. Pegue um atalho Tamanho do sensor em polegadas de tubos analógicos a chips CMOS Área efetiva do sensor tamanho é documento Máscara Bayer e outras técnicas enxergando em cores Quad Bayer e Tetracell Sensor RYYB o mesmo em amarelo Software de câmera algoritmo é tudo Foco automático PDAF, 2x2 OCL e mais Atenção a tendência entre os celulares não é apenas para incluir mais sensores, mas também para adotar componentes maiores / © NextPit Tamanho do sensor em polegadas de tubos analógicos a chips CMOS Para começar, um pouco de história nas especificações das câmeras de celulares, o tamanho do sensor é sempre citado em uma medida exótica na notação 1/xyz polegada, por exemplo 1/1,72 polegada ou 1/2 polegada. Infelizmente, este tamanho não corresponde em nada ao tamanho real do sensor no celular. Vejamos a ficha técnica do IMX586 meia polegada deste sensor de 1/2 polegada corresponderia neste caso a 1,27 centímetro. Mas o tamanho real do Sony IMX586 não tem nada a ver com isso. Se multiplicarmos o tamanho dos pixels de 0,8 mícron pela resolução horizontal de pontos, obtemos apenas 6,4 milímetros, que é apenas metade. Se primeiro usarmos a horizontal e depois o bom e velho Pitágoras para a diagonal, obtemos 8,0 milímetros. Isso não é nem de perto o bastante. E aqui está o ponto crucial as especificações em polegadas foram adotadas há cerca de meio século, quando as câmeras de vídeo ainda dependiam de tubos de vácuo como conversores de imagem. Os departamentos de marketing mantêm a relação aproximada entre a área sensível à luz e diâmetro do tubo até hoje. E por isso um chip CMOS com uma diagonal de 0,31 polegadas é hoje em dia chamado de sensor de 1/2 polegada. "Na minha época, meu amigo" as designações em polegadas dos sensores de imagem datam de tempos como estes. Na foto Ionoscópio inventor Vladimir K. Zworykin ca. 1954 com alguns tubos conversores de imagem / © Domínio Público Se você quiser saber o tamanho real de um sensor de imagem, dê uma olhada na folha de dados do fabricante ou na página detalhada da Wikipedia sobre os tamanhos dos sensores de imagem. Ou você pode fazer como no exemplo acima e multiplicar o tamanho do pixel pela resolução horizontal ou vertical. Área do sensor quando tamanho é documento Por que o tamanho do sensor é tão importante? Imagine a luz caindo através da lente sobre o sensor como a chuva caindo do céu. Agora pense que você tem um décimo de segundo para estimar a quantidade de água que está caindo atualmente. Isto será relativamente difícil com um copo de shot, pois algumas gotas podem cair no copo em um décimo de segundo se chover muito, ou nenhuma gota se chover pouco ou se tiver um pouco de azar. Em qualquer caso, sua estimativa será muito imprecisa. Agora imagine que você tem uma piscina para a mesma tarefa. Com ela, você pode facilmente pegar algumas centenas ou milhares de gotas da chuva e pode estimar com precisão a quantidade de chuva com base na área de superfície. No caso dos sensores de imagem e a luz acontece o mesmo que com um copo de shot ou uma piscina, e a medição da chuva. Quanto mais escuro, menos fótons os conversores de luz capturam — e menos preciso é o resultado da medição. Essas imprecisões se manifestam posteriormente em erros como ruído de imagem, cores imprecisas, etc. Este gráfico mostra uma comparação de alguns dos formatos de sensores atualmente utilizados em celulares / © NextPit Tudo bem que em termos absolutos a diferença entre sensores de imagem nos celulares não é tão grande quanto a diferença entre um copo e uma piscina. Mas o já mencionado Sony IMX586 na câmera telefoto do Samsung Galaxy S20 Ultra é cerca de quatro vezes maior em área do que o sensor de 1/4,4 polegada na câmera telefoto do Xiaomi Mi Note 10. A sede por números cada vez maiores nos materiais de divulgação dos celulares é praticamente o mesmo que usar como velocidade máxima de um carro o valor irreal alcançado em queda livre / © Volkswagen, Montagem NextPit Matriz Bayer e outras técnicas para enxergar colorido Voltando para nossa comparação acima com a água da chuva, se colocássemos vezes baldes em um campo aberto, poderíamos determinar a quantidade de chuva caindo com uma "resolução" de 12 megapixels e registrar algum tipo de informação da saturação de água da nuvem passando por cima da região. Entretanto, se um sensor de imagem com 12 megapixels captasse a quantidade de luz com suas por armadilhas de fótons, a foto resultante seria preto e branco — porque medimos apenas a quantidade absoluta de luz. Não podemos distinguir as cores nesse exemplo, assim como um balde não pode distinguir o tamanho das gotas de chuva que caem sobre ele. Então como transformar a foto em preto-e-branco em uma foto colorida? O truque é aplicar uma máscara colorida sobre o sensor, a chamada matriz Bayer ou filtro Bayer. Isto garante que somente a luz vermelha, azul ou verde atinja os pixels. Com a clássica matriz Bayer com layout RGGB, um sensor de 12 megapixels tem então seis milhões de pixels verdes e três milhões de pixels vermelhos e azuis cada um. O olho humano pode distinguir melhor os tons verdes. Assim, os sensores de imagem das câmeras também são melhor posicionados aqui e têm o dobro de pixels verdes do que os pixels azuis ou vermelhos. À direita está uma matriz RYB - aqui os pixels verdes foram trocados por amarelos / © NextPit A fim de gerar uma imagem com doze milhões de pixels RGB a partir destes dados, o processamento da imagem normalmente começa com o desmosaico dos pixels verdes ou interpolação. Usando os pixels vermelhos e azuis ao redor, o algoritmo calcula então — de forma muito simplificada — um valor RGB para cada pixel. Na prática, os algoritmos de interpolação são muito mais inteligentes, por exemplo, para evitar "franjas" coloridas nas bordas dos objetos. O mesmo processamento é aplicado com os pixels vermelhos e azuis, e uma foto colorida vai então para a memória interna do seu celular. Quad Bayer e Tetracell Sejam 48, 64 ou 108 megapixels a maioria dos atuais sensores de altíssima resolução em celulares tem uma coisa em comum enquanto o sensor propriamente dito tem 108 milhões de "baldes de água" ou sensores de luz, o filtro Bayer acima dele tem uma resolução quatro vezes menor. Portanto, há quatro pixels sob cada filtro de cor. Sejam sensores Tetracell da Samsung ou Quad Bayer de outras fornecedoras em cada vez mais sensores de imagem, quatro pixels compartilham um filtro de cor / © NextPit É claro, isso é tudo o que os departamentos de marketing mais gostam para usar nas fichas técnicas. Um sensor de 48 megapixels! 108 megapixels! Três sensores de 64 MP! E quando está escuro, os minúsculos pixels podem ser combinados em superpixels maiores para oferecer fotos noturnas melhores. Paradoxalmente, porém, muitos celulares mais baratos não oferecem nem mesmo a opção de tirar fotos com 48 megapixels — ou até mesmo oferecem uma qualidade de imagem inferior nesse modo em comparação com o modo de 12 megapixels. Em todos os casos que conheço, os celulares também são tão mais lentos ao tirar fotos com resolução máxima, que o aumento moderado na qualidade não vale a pena — especialmente porque 12, 16 ou 27 megapixels são suficientes para o uso diário e não enchem a memória tão rapidamente. A mensagem de marketing de dezenas de megapixels pode ser ignorada. Mas na prática, os sensores de alta resolução costumam também ser maiores — e a qualidade da imagem se beneficia notavelmente disso. O sensor SuperSpectrum da Huawei trocando o verde e amarelo Há ainda algumas técnicas inspiradas na matriz Bayer. A Huawei, como exemplo mais destacado, conta com a chamada matriz RYYB para alguns sensores ver gráfico acima, na qual o espectro de absorção dos pixels verdes é deslocado para o amarelo. Isto tem a vantagem — pelo menos no papel — de que mais luz é absorvida e mais fótons chegam ao sensor no escuro. Os diagramas de eficiência quântica mostram quão sensivelmente diferentes sensores reagem à luz de diferentes comprimentos de onda. No caso do sensor RYYB ou RCCB à direita, o intervalo sob a curva de absorção verde ou amarela, ou seja, a sensibilidade à luz, é significativamente maior. Por outro lado, os pixels amarelos respondem mais à "faixa de frequência vermelha", o que torna mais difícil o desmosaico / © Sociedade de Ciência e Tecnologia de Imagem Por outro lado, os comprimentos de onda medidos pelo sensor não estão mais tão uniformemente distribuídos no espectro e tão claramente separados uns dos outros como em um sensor RGGB — caso da linha verde interrompendo sua queda no espectro de onda vermelha no gráfico acima à direita. A fim de manter uma reprodução de cor precisa, aumentam as exigências sobre os algoritmos, que devem posteriormente interpolar os valores de cor RGB. É impossível prever qual abordagem produzirá as melhores fotos. Neste caso, só os testes práticos e laboratoriais que provam que uma ou outra tecnologia está correta. Leia também Teste cego de câmeras 2021 o NextPit escolhe a melhor câmera de celular! Software da câmera o algoritmo faz a música Finalmente, gostaria de dizer algumas palavras sobre os algoritmos que acabei de mencionar. Especialmente na era da fotografia computacional, o conceito de fotografia está se tornando difuso. Uma imagem formada por doze fotos individuais ainda é realmente uma fotografia no sentido original? Uma coisa é certa a influência dos algoritmos de processamento de imagem é muito maior do que um aumento discreto da área do sensor. Sim, uma diferença de duas vezes a área faz uma grande diferença. Mas um bom algoritmo também compensa muita coisa. A líder global do mercado de sensores, a Sony, é um bom exemplo disso. Embora a maioria dos sensores de imagem pelo menos tecnologicamente venha do Japão, os smartphones Xperia costumam ficar atrás da concorrência em termos de qualidade de imagem. O Japão pode fazer hardware, mas quando se trata de software, os outros estão mais avançados. Duas fotos do Samsung Galaxy S10. À esquerda, foi usada a câmera do Google, à direita, o aplicativo da própria Samsung. O modo HDR do Google é superior ao da Samsung. Não é de admirar que muitas pessoas baixem a câmera do Google / © NextPit E aqui vai outra dica sobre a sensibilidade ISO, que também merece seu próprio artigo por favor, nunca fique impressionado com os números ISO, pois os sensores de imagem em quase todos os casos* têm uma única sensibilidade ISO nativa que é muito raramente encontrada nas fichas técnicas. Os valores ISO que o fotógrafo ou o sistema automático da câmera definem durante o clique real são mais como uma compensação — ou seja, um "controle de brilho". O "comprimento" da escala para este controle de brilho pode ser definido livremente, portanto escrever um valor como "ISO nas especificações faz tanto sentido quanto escrevê-lo na ficha técnica de um VW Golf... Bom, vamos deixar as coisas assim. * Existem na verdade alguns sensores "dual ISO" com duas sensibilidades nativas no mercado de câmeras, por exemplo o Sony IMX689 no Oppo Find X2 Pro, pelo menos é isso que o Oppo diz. Caso contrário, é mais provável que você encontre o que está procurando em câmeras profissionais como a BlackMagic PCC 6K. Autofoco PDAF, 2x2 OCL e outras técnicas Finalmente, um pequeno ponto que está diretamente relacionado ao sensor de imagem o tópico do foco automático. No passado, os celulares determinavam o foco correto usando o foco automático por contraste. Esta é uma detecção lenta e computacionalmente intensiva. A maioria dos sensores de imagem atuais usa o chamado "autofoco por comparação de fases", também conhecido como PDAF phase detect autofocus. Neste caso, são instalados pixels especiais de autofoco no sensor que são divididos em duas metades, comparam as fases da luz incidente e podem usá-los para calcular a distância até o objeto. A desvantagem desta tecnologia é que o sensor de imagem é "cego" nestes pontos — e dependendo do sensor, estes pixels cegos de foco podem afetar até três por cento da superfície do componente. O Oppo Find X2 Pro ajusta o foco incrivelmente rápido no modo de vídeo graças ao sensor OCL 2x2 / © NextPit Apenas um lembrete quanto menor a área, menos luz/água e menor a qualidade de imagem. Além disso, os algoritmos têm que retocar estas imperfeições como seu cérebro faz com o ponto cego. No entanto, há uma abordagem mais elegante que não inutiliza pixels no sensor. Neste caso, as microlentes que já estão presentes no sensor são distribuídas em vários pixels. A Sony, por exemplo, chama isso de 2x2 OCL ou 2x1 OCL, dependendo se as microlentes combinam quatro ou dois pixels. Quatro pixels sob um filtro colorido sob uma microlente a tecnologia OCL 2x2 da Sony transforma todos os pixels em sensores cruzados para foco automático / © Sony Em breve dedicaremos um artigo separado e mais detalhado ao foco automático. O que você procura em uma câmera quando compra um novo celular? E sobre quais tópicos em torno da fotografia com celulares você gostaria de ler a respeito? Aguardo com expectativa seus comentários! Mais artigos sobre câmeras de celulares Guia fotográfico para smartphone para que serve a abertura Câmera do celular sem foco? Saiba como resolver esse problema Sensor adalah sebuah komponen dalam kamera digital yg bertugas untuk mengubah gambar yang ditangkap oleh lensa. Sensor tersebut terdiri atas berbagai sel yang tersusun membentuk persegi panjang. Tiap satu sel sensor tersebut merepresentasikan satu piksel, jadi banyaknya sel dalam satu sensor kamera sesuai dengan besarnya piksel gambar yang dapat dihasilkan dari kamera sensor pada kamera tersebut bersifat photosensitive. Artinya, saat terkena cahaya, sel sensor akan menghasilkan sinyal listrik berupa tegangan yang besarnya sesuai dengan intensitas cahaya yang diterimanya. Tegangan yang dihasilkan tersebut kemudian diproses oleh prosesor yang ada pada sensor tersebut untuk mengolah sinyal tersebut menjadi warna. Hasil dari seluruh sel sensor kemudian disatukan dan membentuk satu kesatuan gambar yang utuh. Sensor kamera ini ternyata sangat berpengaruh terhadap kualitas gambar. Untuk jumlah piksel yang sama, sensor yang ukurannya lebih besar dapat menghasilkan gambar dengan kualitas yang lebih baik. Hal ini dikarenakan sensor yang berukuran lebih besar umumnya lebih peka terhadap cahaya, sehingga intensitas cahaya yang diterimanya pun dapat lebih besar. Inilah mengapa kualitas gambar kamera DSLR bisa jauh lebih baik dari kamera HP meski resolusinya sama Sensor CMOS vs sensor CCD Perbedaan utama desain CMOS dan CCD adalah pada sirkuit digitalnya. Setiap piksel pada sensor CMOS sudah memakai sistem chip yang langsung mengkonversi tegangan menjadi data, sementara piksel-piksel pada sensor CCD hanya berupa photodioda yang mengeluarkan sinyal analog sehingga perlu rangkaian terpisah untuk merubah dari analog ke digital/ADC. Anda mungkin penasaran mengapa banyak produsen yang kini beralih ke sensor CMOS, padahal secara hasil foto sensor CCD juga sudah memenuhi standar. Alasan utamanya menurut saya adalah soal kepraktisan, dimana sekeping sensor CMOS sudah mampu memberi keluaran data digital siap olah sehingga meniadakan biaya untuk membuat rangkaian ADC Selain itu sensor CMOS juga punya kemampuan untuk diajak bekerja cepat yaitu sanggup mengambil banyak foto dalam waktu satu detik. Ini tentu menguntungkan bagi produsen yang ingin menjual fitur high speed burst. Faktor lain yang juga perlu dicatat adalah sensor CMOS lebih hemat energi sehingga pemakaian baterai lebih awet. Maka itu tak heran kini semakin banyak kamera digital DSLR maupun kamera saku yang akhirnya beralih ke sensor CMOS. Adapun soal kemampuan sensor CMOS dalam ISO tinggi pada dasarnya tak berbeda dengan sensor CCD dimana noise yang ditimbulkan juga linier dengan kenaikan ISO. Kalau ada klaim sensor CMOS lebih aman dari noise maka itu hanya kecerdikan produsen dalam mengatur noise reduction Cara sensor menangkap’ warna Sensor gambar pada dasarnya merupakan perpaduan dari chip peka cahaya untuk mendapat informasi terang gelap dan filter warna untuk merekam warna seakurat mungkin. Di era fotografi film, pada sebuah roll film terdapat tiga lapis emulsi yang peka terhadap warna merah Red, hijau Green dan biru Blue. Di era digital, sensor kamera memiliki bermacam variasi desain teknologi filter warna tergantung produsennya dan harga sensornya. Cara kerja filter warna cukup simpel, misal seberkas cahaya polikromatik multi warna melalui filter merah, maka warna apapun selain warna merah tidak bisa lolos melewati filter itu. Dengan begitu sensor hanya akan menghasilkan warna merah saja. Untuk mewujudkan jutaan kombinasi warna seperti keadaan aslinya, cukup memakai tiga warna filter yaitu RGB sama seperti film dan pencampuran dari ketiga warna komplementer itu bisa menghasilkan aneka warna yang sangat banyak. Hal yang sama kita bisa jumpai juga di layar LCD seperti komputer atau ponsel yang tersusun dari piksel RGB Bayer CFA Sesuai nama penemunya yaitu Bryce Bayer, seorang ilmuwan dari Kodak pertama kali memperkenalkan teknik ini di tahun 1970. Sensor dengan desain Bayer Color Filter Array CFA termasuk sensor paling banyak dipakai di kamera digital hingga saat ini. Keuntungan desain sensor Bayer adalah desain mosaik filter warna yang simpel cukup satu lapis, namun sudah mencakup tiga elemen warna dasar yaitu RGB lihat ilustrasi di atas. Kerugiannya adalah setiap satu piksel pada dasarnya hanya melihat’ satu warna, maka untuk bisa menampilkan warna yang sebenarnya perlu dilakukan teknik color sampling dengan perhitungan rumit berupa interpolasi demosaicing. Perhatikan ilustrasi mosaik piksel di bawah ini, ternyata filter warna hijau punya jumlah yang lebih banyak dibanding warna merah dan biru. Hal ini dibuat mengikuti sifat mata manusia yang lebih peka terhadap warna hijau Kekurangan sensor Bayer yang paling disayangkan adalah hasil foto yang didapat dengan cara interpolasi tidak bisa menampilkan warna sebaik aslinya. Selain itu kerap terjadi moire pada saat sensor menangkap pola garis yang rapat seperti motif di kemeja atau pada bangunan. Cara termudah mengurangi moire adalah dengan memasang filter low pass yang bersifat anti aliasing, yang membuat ketajaman foto sedikit menurun Sensor X Trans Sensor dengan nama X Trans dikembangkan secara ekslusif oleh Fujifilm, dan digunakan pada beberapa kamera kelas atas fuji seperti X-E2 dan X-T1. Desain filter warna di sensor X Trans merupakan pengembangan dari desain Bayer yang punya kesamaan bahwa setiap piksel hanya bisa melihat satu warna. Bedanya, Fuji menata ulang susunan filter warna RGBnya. Bila pada desain Bayer kita menemui dua piksel hijau, satu merah dan satu biru pada grid 2×2, maka di sensor X Trans kita akan menemui pola grid 6×6 yang berulang. Nama X trans sepertinya diambil dari susunan piksel hijau dalam grid 6×6 yang membentuk huruf X seperti contoh di bawah ini Fuji mengklaim beberapa keunggulan desain X Trans seperti tidak perlu filter low pass, karena desain pikselnya sudah aman dari moire terhindar dari false colour, karena setiap baris piksel punya semua elemen warna RGB tata letak filter warna yang agak acak memberi kesan grain layaknya film Sepintas kita bisa setuju kalau desain X Trans lebih baik daripada Bayer, namun ada beberapa hal yang masih jadi kendala dari desain X Trans ini, yaitu hampir tidak mungkin Fuji akan memberikan lisensi X Trans ke produsen kamera lain artinya hanya pemilik kamera Fuji tipe tertentu yang bisa menikmati sensor ini. Kendala lain adalah sulitnya dukungan aplikasi editing untuk bisa membaca file RAW dari sensor X Trans ini